Density-dependent processes influencing the evolutionary dynamics of dispersal: a functional analysis of seed dispersal in Arabidopsis thaliana (Brassicaceae).
نویسندگان
چکیده
We conducted a functional analysis of seed dispersal and its plasticity in response to density in Arabidopsis thaliana by growing morphologically diverse ecotypes under high and low density and measuring seed dispersion patterns under controlled conditions. Maternal plant architectural traits such as height and branching, and fruit traits such as dehiscence and silique length influenced various measures of seed dispersion patterns, including the average dispersal distance, kurtosis of the seed dispersion pattern, and post-dispersal seed density. The density at which plants grew determined which traits influenced dispersal. A change in density would therefore change which maternal characters would be subjected to natural selection through selection on dispersal. Density-mediated maternal effects on dispersal contributed to a negative correlation between parents and offspring for sibling density after dispersal, which could impede the response to selection on post-dispersal sibling density. Plant traits that influenced dispersal also influenced maternal fitness- sometimes opposing selection on dispersal and sometimes augmenting it-and the direction of the relationship sometimes depended on density. These density-dependent relationships between plant traits, dispersal, and maternal fitness can increase or reduce evolutionary constraints on dispersal, depending on the trait and depending on post-dispersal density itself.
منابع مشابه
Genetic Basis and Consequences of Niche Construction: Plasticity‐Induced Genetic Constraints on the Evolution of Seed Dispersal in Arabidopsis thaliana. Author(s):
Because seed dispersal influences the environment experienced by seeds, that environment can change as dispersal evolves. The evolutionary potential of dispersal can in turn change as dispersal evolves, if its expression of genetic variation depends on the postdispersal environment. We examined whether seed dispersion patterns have a detectable genetic basis (and therefore evolutionary potentia...
متن کاملGenetic basis and consequences of niche construction: plasticity-induced genetic constraints on the evolution of seed dispersal in Arabidopsis thaliana.
Because seed dispersal influences the environment experienced by seeds, that environment can change as dispersal evolves. The evolutionary potential of dispersal can in turn change as dispersal evolves, if its expression of genetic variation depends on the postdispersal environment. We examined whether seed dispersion patterns have a detectable genetic basis (and therefore evolutionary potentia...
متن کاملDiversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae).
BACKGROUND AND AIMS Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns of evolution of dispersal-related fruit...
متن کاملMorphomechanical Innovation Drives Explosive Seed Dispersal
How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wa...
متن کاملThe Same Regulatory Point Mutation Changed Seed-Dispersal Structures in Evolution and Domestication
It is unclear whether gene regulatory changes that drive evolution at the population and species levels [1-3] can be extrapolated to higher taxonomic levels. Here, we investigated the role of cis-regulatory changes in fruit evolution within the Brassicaceae family. REPLUMLESS (RPL, At5g02030) controls development of the replum, a structure with an important role in fruit opening and seed disper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2005